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Abstract: Food preparation is one of the essential tasks in daily life and involves a large number of
physical interactions between hands, utensils, ingredients, etc. The fundamental unit in the food
preparation activity is the concept of a recipe. The recipe describes the cooking process—the way
to make a dish in a sequential order of cooking steps. Frequently, following these steps can be an
extremely complicated process, which requires coordination, monitoring and execution of multiple
tasks simultaneously. This work introduces a cooking assistance system powered by Computer Vision
techniques that provide the user with guidance in the accomplishment of a cooking activity in terms
of a recipe and its correct execution. The system can provide the user with guidance for carrying out
a recipe through the appropriate messages, which appear in a panel specifically designed for the
user. Throughout the process, the system can validate the correctness of each step by (a) detection
and motion estimation of the ingredients and utensils in the scene and (b) spatial arrangement of
them in terms of where each one is located to another. The system was first evaluated on individual
algorithmic steps and on the end-to-end execution of two recipes with promising results.

Keywords: cooking assistance; recipe preparation; intelligent kitchen; object detection; object tracking;
computer vision; machine learning

1. Introduction

Cooking is a very important aspect of everyday life—a task that usually requires a lot
of practice and experience while at the same time being very time-consuming. Cooking
takes place inside the kitchen, which, according to L. C. Johnson [1], “is the environment
where work blends with desire, enjoyment, imagination, safety and other people, and
where domestic technology, architects and designers create devices and space”.

Activities in the kitchen environment are particularly complex, usually involving
a large number of objects, gestures as well as cognitive relations between them. The
complexity of a task such as cooking can be magnified if one thinks that an individual can
slightly modify a common recipe and thus contribute to the general multiplicity of the
enterprise.

A cooking recipe is the fundamental unit of a cooking activity and is the core of
culinary art. It consists of a set of instructions that describes how to prepare or make
something, especially a dish of prepared food. The earliest known written recipes date
to 1730 BCE and were found in three cuneiform tablets in Mesopotamia [2]. Since then,
the food preparation process has been commercialized and industrialized as a valuable
part of food process engineering, a concept that involves the entire chain from agricultural
production up to the packaging, distribution and eventually consumption of food [3].

At the industrial scale, computer-aided solutions have been present for many years
and for a variety of aspects in the food industry, such as quality assurance, safety and
hygiene [3]. On the other hand, with the huge advances in technology and the increasing
interest in enhancing humans in their regular lives, cooking recipes started to be digitized
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in order to be accessible from every digital device. Researchers study the process of cooking
activities in order to enhance humans in their regular lives and endeavor to enrich this
process by integrating multimedia and embedding technologies in various stages. This is
achieved by making these procedures more convenient, less time consuming or by enabling
people through Ambient Assisted Living (AAL) to conduct otherwise unsolvable tasks.
However, preparation activities for cooking in the kitchen involve physical interactions
between multiple objects such as hands, utensils and ingredients, rendering it a very
challenging research problem.

In the recent past, Computer Vision (CV), Robotics and Machine Learning (ML) started
drastically venturing into cooking assistance. These fields provide insight into some of
the most unexcogitable problems while at the same time facilitating the development of
more realistic systems which could nonetheless address more comprehensively the cooking
activity process. CV for human sensing has traditionally focused on using RGB images.
Theoretically, fully automatic tools that integrate CV algorithms to extract and identify
the elements of interest across frames could be developed. Unfortunately, state-of-the-art
algorithms are not error free, and false positive and false negative detections would require
a human effort to correct them in a post-processing stage.

The present study introduces an assistive cooking system that provides the user
guidance in the accomplishment of a cooking activity via CV and ML. The potential of
this work lies in the fact that cooking activities can be monitored and thus modeled in a
dynamic infrastructure that does not rest on the use of cumbersome sensors or hardware,
thus rendering it employable to the average user who cannot have access to expensive
hardware, which may also require the installation of supplementary material. This does
not by any means suggest that this is a standalone system that aims to replace elaborate
structures deployed in smart homes or smart kitchens. On the contrary, it is a system
designed specifically for the needs of ICS-FORTH’s Intelligent Home and aspires to be used
in the ambient facilities of the Intelligent Kitchen. Alongside other pre-existing systems, the
main goal of this work is to support and guide the cooking process, decrease the perceived
complexity of unfamiliar recipes, increase user confidence about the success of intermediate
steps and finally reduce the user’s inhibitions about using technology in a kitchen for fear
of damaging it.

In summary, some of the modalities and aspects of this research work are the following:

• The system supports the spatial arrangement of objects such as utensils and food
ingredients in terms of where each one is located relative to another. This can be
interpreted in various ways, bearing in mind the needs of each user.

• The system supports assistance of the cooking activity in terms of recipes and their
correct execution. Each recipe is imported into the system in the form of a configuration
file. The system is able to construe this configuration file and translate it into human
perceived knowledge. It can facilitate the cooking procedure while at the same time
providing the user with advice on how to carry out the specific task (i.e., carrying out
the recipe).

• The system primarily supports all the necessary transformations of a raw image into
real-world case scenarios via algorithmic approaches.

2. Related Work

Many attempts have been made to provide systems that assist the user in the culinary
process, both at the research and industrial level. However, few of them have tried to offer
a cooking experience similar to the actual cooking assistance during the cooking process,
and even less take advantage of what CV and ML have to offer.

2.1. Literature Review

In this section, we present the state-of-the-art perspective of each work. Discussion
over the presented approaches is included in Section 2.2.
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2.1.1. Systems

Initially, we present some more complete systems, meaning that they capture the user
and/or utensils and ingredients for predicting or assisting the meal preparation. Ref. [4]
approaches food preparation activities with the use of ML algorithms combined with visual
and accelerometer data. The goal of multi-modal activity recognition is achieved through
an accelerometer localization algorithm that facilitates the merge of accelerometer and
visual data. A statistical activity model is also introduced in order to guide the construction
of datasets for complex activities and give an outlook on the next steps.

The contribution of [5] is a novel method for merging accelerometers and CV for
activity recognition. The multi-modal activity recognition dataset used in this work includes
more than 4.5 h of annotated accelerometer and RGB-D video data. The evaluation of the
experiments of the method and the comparison of various fusion methods also include a
protocol for benchmarking.

Ref. [6] provides accurate cooking activities recognition as the first step to realizing
cooking assistance service. The main focus is on the problem of cooking activity recognition
in egocentric videos. The proposed method is based on hand detection, where the region
around the hand is extracted based on the detected hand in order to facilitate detection in
cluttered backgrounds. The approach of this work is to combine 2D convolutional neural
networks (2DCNN) for the motion and 3D convolutional neural networks (3DCNN) for
the appearance. The analysis of the first-person video is deemed very useful, especially
for videos containing different hand motions and utensils. Therefore, a new dataset that
consists of eight cooking-specific activities, such as “Peeling”, is proposed. In this activity,
the hand motion could vary on whether a knife or a peeler is used.

Dipak Surie, Saeed Partonia and Helena Lindgren proposed Kitchen As-A-Pal [7],
an interactive smart kitchen with real-time human sensing capabilities. In particular,
Kitchen As-A-Pal is equipped with CV systems, which are based on the fusion of fisher face
recognition and skeletal tracking approaches. A Microsoft Kinect [8] is used to localize and
track one or more humans, whereas the fused approach gives human identity recognition
accuracy of 91.75 precision and 66 recall values for single occupant setting with good smart
space coverage.

The authors in [9] proposed a use-centric cooking support system named Smart
kitchen. The role of the Smart Kitchen is to know beforehand the recipe that the user wants
to execute and give instructions when the cooking steps are finished or when the user asks.
An important part in the aforementioned is that the user can change the cooking steps
freely whenever they want. Smart Kitchen supports three main protocol functionalities:
tracking food, recognizing food material and recognizing cooking actions.

Cook’s Collage [10] realizes a recipe tracking service through a video-based approach.
If a cook interrupts their cooking, they are provided with a memory aid in the form of a
video summary of what they have already done. More precisely, the user has access to
images that show the last six actions and receives information about which ingredients are
used and in what quantity with respect to the order of the performed actions. An embedded
camera above the preparation area records the user’s actions. In stress situations, memory
aids such as video and images have proven helpful, according to this work.

KogniChef [11] is a smart kitchen environment and software framework that imple-
ments a cooking recipe assistant. The prototype features a framework for the integration
of multi-modal displays, a sensor layer, interfaces for control, as well as a controller that
connects all these components together. The system deploys object detection and track-
ing as one of the most central components because it defines a fundamental basis for
the tracking of cooking actions carried out by the user. These modules provide a list of
Object-Beliefs, each referring to a detected and classified object in the scene. Based on an
XYZ/RGB/temperature point-cloud, identical objects can be distinguished.

The work of Nguyen Thi Thanh Thuy and Nguyen Ngoc Diep [12] proposes a learning
method for food preparation activity that is based on feature learning from histograms of
motion primitives. Its effectiveness is validated by recognizing ten activity classes. The
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segmentation of sensor data streams into frames was accomplished through a sliding
windows approach, following the transformation of the sensor signals into a feature vector.
Afterward, the feature vector is classified using a Decision Tree classifier.

The authors in [13] proposed PIC2DISH, a cooking assistant that, given an image of
food and a list of ingredients, provides the user with instructive videos demonstrating
the utilization of the ingredients (e.g., how to cut a cucumber into slices) in order to
complete the recipe. Initially, the system recognizes the recipe and the corresponding
ingredients using a multi-task Convolutional Neural Network (CNN) and then decides if
some ingredients need to be substituted because they do not exist in the user’s list. This
is achieved using a knowledge graph, which encodes the relationship and co-occurrence
of ingredients and is learned using millions of recipes and their variants from an online
source. Finally, the user is provided with the steps of the recipe along with video clips
related to these ingredients.

A more recent work is HanKA [14], which is a modular cooking assistant. HanKA
supports the detection and control of kitchen devices and additional user interfaces for
the purpose of task planning throughout the execution of a recipe. A recipe in HanKA is
represented by a knowledge graph, which includes the temporal aspect; for example, “a
potato has to be cooked in the steamer for 17 min”. The system expects the user to give
feedback for some manual tasks (e.g., slicing) and expects that each device has a control
interface such that it can be scheduled for the corresponding task (e.g., cook for X minutes).
This way, HanKA can schedule the tasks in a smart way such that a user can do manual
tasks while waiting for devices to finish theirs.

Apart from research prototypes, commercial cooking assistant products exist as well.
Bosch Cookit [15] and Thermomix TM6 [16] share the same spirit, that being an all-in-one
appliance for cooking, cutting and slicing and also integrates a screen for recipe guidance
and programs selection. Both come with many recipes pre-installed on the device.

2.1.2. Datasets and Tools

Besides meal preparation assisting systems, some tools and datasets have been pro-
posed in order to complement them. iVAT [17] is an interactive video annotation tool
that supports manual, semi-automatic and automatic annotations with various detection
algorithms. The input could be a video and a related list of items, while the output is an
item annotation or even a template for that annotation. There is an option of categorizing
the items to be annotated into categories such as food, kitchenware or action.

On the main screen, there is video-related information, such as a list of various shots
and items, while the most important feature is a video browser that allows the user to seek
through frames and sequentially browse shots. The most recently annotated frames are
shown in the video frame, while at the same time, the user can have access to interaction
modalities, e.g., clickable buttons, drag and drop operations, context menus and shortcuts.
The lower part of the window shows an item’s timeline every time the item is annotated
manually or automatically. The cell in the timeline corresponds to a frame position and
shows if the item is present in that frame.

The work of Marcus Rohrbach, Sikandar Amin et al. [18] proposes a new activity
dataset that contains 65 activities recorded in a realistic setting. The activities are, for
the most part, fine-grained and display a low inter-class variability to be able to evaluate
classification and detection performance. Cooking activities are handled with extreme
caution and are dissected into small differences in activities.

The contribution of this work relies on the novelty of the dataset, which introduces a
classification and detection challenge together with appropriate evaluation criteria. The
input data are high-resolution image and video sequences (jpg/avi), with the corresponding
activity class and time interval annotations. The pre-computed mid-level representations
are in the form of a pre-computed pose.
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2.2. Discussion

The presented review of the literature has revealed several features that are supported
by frameworks targeting the Intelligent Kitchen as well as cooking activity recognition. The
majority of the mentioned research systems focus on the process of developing software
that can understand or classify cooking activities via the use of various hardware, e.g.,
sensors, cameras, etc. [5,6,18]. At the same time, there is an attempt to present more
complete systems in a way that becomes apparent, i.e., the assistance of the cooking process
can be applied in the existing hardware [10]. Of course, by using the term “complete”,
there lies the implication that an idea or a system is better than any other that has not been
applied to real-case scenarios such as a fully employable Smart Kitchen [11]. Next, there is
going to be a typology of the discussed literature as it is straightforward even for the most
benighted reader to follow the aforementioned literature review.

Most of the systems that utilize CV and ML aim at food preparation activity recognition
or activity recognition in general. Systems like that [9] focus on solving intractable problems
in CV, such as occlusion or food change of form during cooking. In the same context,
Ref. [7] move toward human sensing in terms of ubiquitous computing of human activity
inside the smart house, ergo focusing on face recognition and skeletal tracking. Much
research is also dedicated to the fusion of CV with data provided by sensors, a step
toward multi-modal activity recognition [4,5], even though it is not successful in evaluating
different fusion techniques as well as leaving a lot unanswered regarding the credibility
of such experimentations. Subsequently, the following research work, also published by
Sebastian Stein and Stephen J. McKenna [4], introduces datasets of people performing food
preparation activities as a means of evaluating different fusion techniques, additionally
in the context of the recipe and ingredients acted upon. On the same note, Ref. [17]
focuses on annotating cooking videos and supports manual, semi-automatic and automatic
annotations obtained on the basis of the interaction of the user with various detection
algorithms but does not establish a protocol for evaluating different techniques [5,7,9].
Nevertheless, it establishes an incremental learning framework that allows increasing the
accuracy of the underlying algorithms over time, which is compared to the works of Thuy,
Nguyen Thi Thanh et al. [12] and Urabe, Shuichi and Inoue et al. [6]. The more “machine-
learning based” approaches depend on neural networks to comprehensively respond to the
challenge of cooking activities recognition. While both [6,12] propose custom datasets with
food preparation activities, Ref. [12] only base their results on motion primitives and do
not combine them with activity streams. On the other hand, Ref. [6] combines appearance-
based approaches using 2DCNN and motion-based methods using 3DCNN, which enables
the improvement of the recognition performance of cooking activities on their dataset. Last
but not least, KogniChef [11] is a commercial product that combines annotation modality,
such as in [4,12,17], reinforced with an XYZ/RGB/temperature point-cloud, which serves
as a sensor system for monitoring the food preparation activities, much like [4–6,12,17]. The
KogniChef platform also enlists assistance in the cooking process using a spatio-temporal
tracking layer and supports a user interface that is specialized for the kitchen configuration
and guides the user through the recipe. Different to other systems, PIC2DISH [13] does
not capture the cooking environment but only the photo of an existing cooked recipe.
Although it is able to recognize the recipe and corresponding ingredients from the photo,
its applicability is limited because, in a real scenario, photos with cooked meals that appear
in online sources are usually accompanied by recipes. Therefore, the generation of the
recipe can depend solely on textual information. Furthermore, it does not include real-time
feedback on the existing state of the recipe. Finally, the learning part of HanKA [14] is
the planning of individual tasks of the recipe. Planning is very useful, especially for an
inexperienced user; however, the entire system depends on existing devices, which can be
discovered and controlled externally.

There are many features presented in the above section, some of which display great
diversity from one another. Each system has its own weaknesses and strengths and deserves
equal and impartial study from the research world in order to gain and benefit both from
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the good points but also from the inadequacies. For example, HanKA can avail from a
system that utilizes CV for real-time feedback, as proposed, to mitigate the need for user
confirmation after completing manual tasks. It can automatically recognize that the user
has finished slicing onions, rather than expecting the user to manually confirm it.

In summary, the examined systems support the following features:

1. Computer vision techniques. Includes the research based on the field of computer
vision, varying from computer vision-based tracking to object detection and providing
an answer to the fundamental question of what is on the scene in a food preparation
activity. High intra-class variability often foreshadows these techniques’ credibility.
Features such as pose representation and face recognition are considered reliable for
this kind of research and are often deployed in order to interpret the volitions of a
user.

2. Creation and annotation of datasets. The annotation of cooking videos requires special
care due to the difficulty of gathering experimental data. It is an extremely laborious
process that nonetheless provides significant records on everything regarding a food
preparation activity. It is to be noted that the process of annotating and documenting
the results in a dataset is the utmost and most impartial way of contributing to the
progress of the field.

3. Activity Recognition (AR). Activity recognition aims to recognize the actions and
goals of the user in a food preparation activity such as a cooking recipe.

4. Sensor fusion. There is a lot of research in the direction of using more than one sensor
and combining the obtained data to advance food preparation activities. The sensors
can be cameras or accelerometers attached to the ingredients themselves.

5. Machine learning. Machine learning methods are often deployed either for enhancing
computer-vision-based techniques or as standalone computational methods. Artificial
Intelligence and Machine Learning have “infiltrated” horizontally various disciplines,
and Computer Vision is no exception. Models such as YOLO [19] or Detectron [20],
developed by the Facebook AI Research team, have improved tasks such as object
detection.

The association of previously cited literature works to the above categories is presented
in Table 1.

Table 1. Comparative Study of Literature work.

Related Work ML AR Spatial
Config. CV Dataset Cre-

ation Sensor Fusion

[5] – ✓ – – – ✓

[7] – – – ✓ – –

[9] – ✓ – ✓ – –

[10] – – – – – –

[12] ✓ ✓ – – – ✓

[4] – ✓ – ✓ – ✓

[18] – ✓ – ✓ ✓ –

[11] – – – ✓ – –

[6] ✓ ✓ – ✓ ✓ –

[13] ✓ – – ✓ – –

[14] ✓ – – – – –

Present work ✓ – ✓ ✓ ✓ –



Electronics 2022, 11, 3148 7 of 28

3. Method

The system that we propose comprises two high-level components, as shown in Fig-
ure 1. The first component (Figure 1-left) corresponds to the cooking procedure application,
which orchestrates our pipeline. The second component (Figure 1-right) is related to the
object detection task. For image sensing, we utilized a single Kinect for Windows v2 RGB-D
that was interfaced through the libfreenect2 driver and corresponding library [21]. We
chose such a type of sensor for the reason that it offers a wide-angle lens and, therefore, is
suitable for capturing larger areas even if it is installed at lower heights. Although we do
not currently utilize the depth stream of the sensor, we regard it as an important cue for the
setup, and it will be exploited in future work.

The cooking procedures application iteratively runs the subsequent steps. At first,
an RGB image is fetched from the camera and then lens distortion correction is applied.
Afterward, the image is given as input to the object detector component, and the result
contains the bounding boxes and labels of the detected objects, if any. The detections are
passed through object tracking, which compensates for possible transient misses. The
adjusted bounding boxes are considered as moving or not by applying an optical flow
algorithm. Finally, boxes, labels and flow information of them are given as input to the
recipe decision logic component for the evaluation of the current state of the recipe.

RGB
image

undistorted
RGB image

predictions
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ep

ro
ce
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in
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ep
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ci

pe
 lo

gi
c

cooking procedures application
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cooking procedure
state evaluation

TorchServe (REST API)

object detector

Figure 1. Application architecture of our system.

3.1. Detection of the Objects

In CV and ML, object detection refers to the two-step process of finding bounding
boxes that contain exactly one type of object inside, as well as classifying this exact object
and assigning it to a label. This label corresponds to the type of object that is included in
the bounding box. Detecting and identifying the existing objects correctly is crucial and
should be verified in every step of the procedure. The object’s detection accuracy is scored.

3.1.1. Object Detection Framework

In recent years, in parallel with the emergence of ML frameworks (i.e., PyTorch [22],
Tensorflow [23]), corresponding task-specific frameworks have also evolved. Their purpose
is to provide a set of task-related workflows, including common configurations, pre-trained
models, and training and evaluation scripts, such that the setup of a model for a new
dataset is achieved with less effort. In this work, we utilized Detectron2 [20], an object
detection framework implemented by Facebook AI Research (FAIR) on top of PyTorch.
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Detectron2 provides state-of-the-art detection and segmentation algorithms. It supports a
number of CV research projects and production applications in Facebook.

Each detection algorithm can essentially be thought of as comprising two parts. The
first part is related to the extraction of feature maps from the image, and the second part is
related to detection, which consists of proposing object regions (boxes) and classification of
them according to the predefined set of classes.

In Detectron2, a variety of models for features map extraction are implemented,
including models based on CNN [24] and Visual Transformer (ViT) [25]. In regards to the
detection part, Detectron2 provides implementations for the R-CNN family of detectors. A
popular one is the Faster R-CNN detector [26], which uses a novel region proposal network
(RPN) for generating region proposals. Faster R-CNN was extended by Mask R-CNN [27],
also included in Detectron2, which provides per-pixel predictions of the objects labels,
in addition to bounding boxes. In our case, object masks are not mandatory to compute;
therefore, we chose the plain Faster R-CNN detector with ResNeXt-101 CNN model [28] for
feature map extraction. Although a ViT backbone would achieve better accuracy, we use
the aforementioned CNN model as we found that it provides a good trade-off for speed,
accuracy and GPU memory footprint.

3.1.2. The Need for a Custom Dataset

Apart from the models themselves, Detectron2 provides corresponding parameters,
the so called model weights. However, in most cases, these pre-trained models are solely
for demonstration purposes and have limited applicability for custom object classes, as
required by a real-world scenario. The reason is that these models have been trained on
publicly available datasets, specially designed for general-purpose object detection. Two of
them, COCO [29] and LVIS [30], include everyday objects that correspond to some general
categories such as food, furniture and animals and hundreds or thousands of images
of them along with corresponding annotations. However, the obvious drawback is that
they do not focus on a single category. For example, COCO includes a “bowl” class but
not a “plate” one. LVIS, on the other hand, includes most cutlery and tableware objects,
as required by our task, but has a limited variety of foods. Another dataset that was
proposed recently, named EPIC-KITCHENS [31], focuses exactly on kitchen-related tasks
and includes a large variety of kitchen utensils and food. Even such a thorough dataset has
its own limitations though. We summarize them below.

• A large dataset does not and cannot include all possible ingredients required for
preparing special recipes such as traditional recipes.

• Annotations about utensils are stateless. For example, there is no distinction between
an empty bowl and a bowl with some ingredients in it

• For some classes we may need finer detection about specific object classes rather than
relying on a single class. For example, we may need to specify which bowl is the one
we are interested in, small-vs.-large or plastic-vs.-glass.

From the above remarks, we conclude that object detection for objects involved in
cooking procedures can be performed as follows.

1. Utilize an existing detector as is, predict every class that it supports and discard
objects not interested in.

2. Train a detector with a subset of classes of an existing dataset;

(a) Utilize solely the existing dataset;
(b) Augment dataset with images obtained from custom objects instances.

3. Train a detector solely with a new dataset.

In our work, we considered cases 2 and 3. In the following sections, the entire process
of detecting objects used in a cooking procedure will be explained in detail. In either case,
we consider that starting from a pre-trained detection model is of great benefit. Such an
approach is usually adopted because it accelerates training time, provides a good starting
point for the weights of the neural network and helps to avoid over-fitting, especially if
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training involves few images and classes, as in our case. For case 3, we also specify the
procedure and tools related to the creation of a new dataset. An example output of the
detector trained on our custom dataset is shown in Figure 2.

Figure 2. The output of the trained model: bounding boxes, scores and labels.

3.1.3. Utilization of Public Datasets

In this section, we investigate the utilization of existing public datasets and pre-trained
models, a case which is adequate only if all recipe objects correspond to a class in the
dataset. For this case, we considered the COCO dataset. From the 80 object categories, we
considered seven of interest, and more specifically, “bottle”, “wine glass”, “cup”, “fork”,
“knife”, “spoon” and “bowl”.

Let us say that D0 is a detection model, pre-trained on all COCO categories. The
possible options for refining D0 for the custom classes and/or custom objects instances are
the following:

1. Using a subset of COCO, keeping only classes of interest;
2. Using images of the specific objects instances that we want to further classify;
3. Combination of 1, 2.

Implementation of option 1 is straightforward. This is by creating a subset of the
dataset, retaining only the relevant annotations, and training using this subset. For option
2, we considered an approach which required minimal effort, by automatically annotating
videos of the custom object instances. More specifically, we recorded a video per object
instance and ran a detector trained as specified in option 1 in order to obtain the pseudo
ground-truth annotations. We also kept only detections with large confidence score (0.7).
Afterwards, we refined D0 using only these automatically generated annotations. For the
first option, we realized that even for these few classes, the detector performed poorly
in some cases. For the second case, the detector performed well when deployed under
equivalent lighting conditions but very poorly if the lighting conditions were dramati-
cally changed. An explanation for the latter is that the model overfitted not only to the
custom objects but on the specific views of them. This was despite some standard data
augmentation techniques that were adopted during training.

For this reason, we evaluated option 3. In this case, the dataset was created using
a concatenation of the COCO subset and at most 150 images per object from the dataset
that was created for option 2. The motivation about this was to instruct the model to
retain some general class information, e.g., about the structure and shape of the object and
simultaneously learn specific object instance information, e.g., shape and appearance. The
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combined model achieved a balance between generalization and specialization. However,
the drawback, as mentioned before, is that the detector is limited to only the classes that
are contained in the public dataset. Although we found such combined option useful, we
did not further consider it through formal evaluation and we opted for the creation of a
new custom dataset.

3.1.4. Training with Custom Datasets

A custom dataset is a dataset that is created by the user, meaning that the user
annotates the objects that the model will be trained to. As also explained in Secion 3.1, the
annotations consist of the bounding boxes that include the concerning object and the label
of the object. The tool used for labeling out images to train the model is CVAT [32]. CVAT
is a free, online, interactive video and image annotation tool for CV. Figure 3 depicts an
example of the annotation workspace screen of CVAT.

In this case, each object and each state of each (e.g., empty bowl vs. not) can be
annotated with a different label, such that they correspond to separate classes. We consider
that a detector trained on such annotations is a baseline object re-identification model with
object state knowledge. It is considered as a baseline, because no specific re-identification
or state methodology has been applied; however, it serves such prediction information.

Figure 3. The annotation workspace screen of CVAT. In the particular case, the video frame
contains an object corresponding to “bowl” class and a bounding box containing exactly
the object that has already been created.

We considered the execution of two recipes, namely “Greek Ntakos” and “Fava”. For
“Greek Ntakos”, the required ingredients are ntakos, feta, tomato and oil. For “Fava”,
the required ingredients are fava, lemon, oil and onion. Corresponding utensils such as
plates, bowls and cups are also required for both recipes. The complete list of utensils and
ingredients for them is presented in Tables 2 and 3 along with indicative images.
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Table 2. Indicative images from the dataset for “Greek Ntakos” recipe.

feta glass bowl ntakos oil

plastic bowl plastic cup plate plate w. ntakos

salt small plate tomato trimmed tomatoes

Table 3. Indicative images from the dataset for “Fava” recipe. For the ingredients and
utensils that are not shown (oil, salt, plastic bowl, plastic cup) please refer to Table 2.

lemon onion onion bowl

fava spoon squished lemon

The dataset was created as follows. For each object, a separate video was recorded.
The resolution of the video was 1920 × 1080, the highest of the Kinect v2 sensor. During
recording, a person was instructed to place the object at various positions on the table, such
that a range of positions, poses and lighting variations was captured. This is crucial for the
object detector to be able to learn object characteristics that are invariant to these changes
in appearance. Each video was imported into CVAT and annotations were created from
sparse frames of the video, which corresponded to the different placements of the object.
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An example of the annotation process for some of the objects of “Greek Ntakos” recipe is
presented in Figure 4. The number of annotations per object are shown in Table 4.

Figure 4. CVAT screens at various annotation stages. Each object was moved at various
positions such that a variety of poses and locations was captured.

Table 4. The number of bounding boxes that were annotated for each of the objects. Objects
from both recipes are shown.

Class Name #bboxes Class Name #bboxes

fava 30 plastic cup 42
feta 46 plate with ntakos 18
glass bowl 30 plate 9
lemon 31 salt 30
ntakos 49 small plate 32
oil 52 spoon 30
onion bowl 30 squished lemon 30
onion 30 tomato 45
plastic bowl 30 trimmed tomatoes 31

3.1.5. Model Deployment

A final step beyond model training is the so-called model deployment—the integration
of the model into a production environment such that it can be utilized from separate
applications. For this purpose, we utilized TorchServe, an open-source model serving
framework for PyTorch. TorchServe makes it easy to deploy trained PyTorch models
without having to write custom code. TorchServe delivers lightweight serving with low
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latency, so models can be deployed for high performance inference. It provides default
handlers for the most common applications such as object detection and text classification,
so it is not necessary to write custom code to deploy them. It supports serving multiple
models simultaneously using a RESTful API.

3.2. Object Tracking

Object tracking was implemented using the MultiTracker class and, more specifi-
cally, OpenCV’s DCF-CSR tracker [33], which is available through a common multi-object
tracking API. This tracker is not the fastest but it produces the best results in many cases
examined.

Object tracking is used as a preventive measure in the case of failure of object detection
and is deployed particularly for this scenario. In the context of this research work, object
tracking is not used for tracking an object but to localize the bounding boxes of the objects in
the uncommonly rare event that object detection fails. The method is deployed periodically,
unlike object detection and optical flow (see Secion 3.3). Figure 5 shows simultaneous
detection and tracking.

(a) (b)

(c)

Figure 5. Showcase of simultaneous object detection and tracking: (a) solely object detection,
(b) combination of object detection and tracking, (c) updated detection and tracking.

3.3. Optical Flow

Optical Flow provides information to the system about the motion of the objects, which
can be used in conjunction with data we extract from Object Detection in order to identify
which is the object that performs the movement. The relationship of Object Detection and
Optical Flow plays a crucial role in this research work, as explained in Secion 3.4.3.

Three methods of Optical Flow were implemented. An experiment was designed,
where each method was tested with the same data set (see Figure 6), in pursuance of the
best of these three methods in terms of performance and accuracy (see Secion 4.4.1).
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(a) (b) (c)

Figure 6. The objects that were utilized for the optical flow experiment: (a) plate, (b) glass
bowl, (c) plastic cup.

The following methods were implemented in this research work:

1. Sparse Optical Flow with Lucas–Kanade algorithm [34–36]. Figure 7 shows the
visualization of the movement of the objects.

2. Dense Optical Flow with interpolation of Sparse Optical Flow with Lucas–Kanade
algorithm [34,35]. Figure 8 shows the visualization of the angle (direction) of flow by
hue and the distance (magnitude) of flow by value of HSV color representation.

3. Dense Optical Flow with Farneback algorithm [34,35,37]. The visualization of the
optical flow is shown in Figure 9.

(a) (b)

Figure 7. Sparse Optical Flow with Lucas–Kanade: (a) Shi–Tomasi features [34] to track, (b)
Optical Flow with colored curves.

(a) (b)

(c) (d)

Figure 8. Visualization of Dense Optical Flow with Lucas–Kanade: (a) moving ntakos, (b)
moving ntakos inside the plate, (c) moving plate with ntakos, (d) moving plate with ntakos.
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(a) (b)

(c) (d)

Figure 9. Visualization of Dense Optical Flow with Farneback: (a) moving ntakos, (b)
moving ntakos inside the plate, (c) no move, (d) moving plate with ntakos.

3.4. Recipe Decision Logic

In the previous sections, we described the steps for acquiring all the essential sensory
data that will be fed to the decision logic component. The workflow of this component is
shown in Figure 10. Individual steps are discussed in subsequent sections.

bboxes
labels

optical flow 

all step objects
are present

none of the
objects is
moving

spatial
arrangement

is OK

recipe steps are
completed

next step

start

end
preprocessing steps

report invalid
configuration

report correct
configuration

application initialization recipe
config file

Figure 10. Workflow of our approach.

3.4.1. Recipe Specification

The recipe specification is included in a configuration file, which is a keystone regard-
ing the execution of a cooking procedure. It contains every important information that the
system needs in order to validate the facticity of this procedure. The configuration files
corresponding to our two recipes are shown in Listings 1–2.
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Listing 1. “Greek Ntakos” recipe specification.
1 {

2 "ingredients": [ "plate", "oil", "ntakos", "ntakos", "ntakos","trimmed_tomatoes","

feta" ],\

3 "recipe": "Greek Ntakos",

4 "spatial configurations": {

5 "oil": "left_above_feta",

6 "trimmed_tomatoes": "right_below_oil",

7 "feta": "left_to_ntakos"

8 },

9 "cooking configurations": {

10 "step 1": [ "plate_with_ntakos", "oil", "trimmed_tomatoes", "feta" ],

11 "step 2": [ "plate_with_ntakos", "oil", "glass_bowl", "feta" ],

12 "step 3": [ "plate_with_ntakos", "oil", "glass_bowl", "small_plate" ],

13 "step 4": [ "plate_with_ntakos", "plastic_cup", "glass_bowl", "small_plate" ]

14 },

15 "cooking messages": {

16 "step 1": "Add ntakos in plate",

17 "step 2": "Add diced tomatoes on top of ntakos",

18 "step 3": "Add feta on top of diced tomatoes",

19 "step 4": "Add oil on top of everything",

20 "step 5": "Recipe followed successfully! "

21 }

22 }

Listing 2. “Fava” recipe specification.
1 {

2 "ingredients": [ "fava", "oil", "salt", "lemon","onion" ],

3 "recipe": "fava",

4 "spatial configurations": {

5 "oil": "left_above_fava",

6 "spoon": "right_to_fava",

7 "fava": "left_to_spoon"

8 },

9 "cooking configurations": {

10 "step 1": [ "fava", "oil","salt","onion_bowl","lemon" ],

11 "step 2": [ "fava", "plastic_cup","salt","onion_bowl", "lemon" ],

12 "step 3": [ "fava", "plastic_cup","plastic_bowl","onion_bowl", "lemon" ],

13 "step 4": [ "fava", "plastic_cup","plastic_bowl","onion_bowl", "squished_lemon" ]

14 },

15 "cooking messages": {

16 "step 1": "Add onion in fava",

17 "step 2": "Add oil on top",

18 "step 3": "Add salt",

19 "step 4": "Add lemon on top",

20 "step 5": "Recipe followed successfully !"

21 }

22 }

As mentioned in Secion 1, the cooking procedure that is examined in this research
work is the correct execution of a recipe and the required spatial arrangement of the
ingredients/utensils comprising it. At the same time, the system assists the user to execute
the recipe by providing corresponding messages, which also exist in the configuration file.
Collectively, the configuration file contains the features below:

• The name of the recipe in study;
• A list of the ingredients that are vital for completion of the recipe;
• The spatial configurations of the ingredients/utensils;
• The cooking configurations of each step of the recipe in term of ingredients;
• The necessary messages, pointed to the user to assist him in completing the recipe

successfully.

3.4.2. Spatial Arrangement

Apart from existence of ingredients and utensils in the scene, knowing their relevant
positions with respect to each other is also valuable information. This is suited for recipes
which have such specific requirements, e.g., if serving instructions are included in the
recipe. Serving instructions may come in the form of having a dip or a sauce that needs
to be placed in a specific position next to a cooked meal. Instructions can also take into
account particularities of the cook such as being left-handed or ambidextrous. The relative
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position of utensils is also useful in situations where there are safety measures that need to
be applied in the cooking scene (see cooking ring). Utensils on high temperatures should
be kept apart from flammable materials or cooking appliances.

In our implementation, spatial arrangement is defined as the position of an object,
relative to another object. We approached this relative position as placement of an object
in one of eight directions around the reference object; top, bottom, left, right and the
intermediate ones. The method to determine whether the relative position of the object
is right or left to another object, by calculating the angle between the respective vectors
of these objects. The key idea behind this is that a coordinate system can be assumed in a
frame even if it does not exist in mathematical terms. For example, the horizontal line of
an object’s centre to the end of the frame can easily be considered as an abscissa. In view
of this fact, the angle can be calculated, and therefore, the relative position of two objects,
by calculating the angle between the abscissa and the vector that is formed if the centres
of the two objects are connected. The native coordinate system of OpenCV had to also be
transformed counter-clockwise.

3.4.3. The Cooking Assistant

The role of the cooking assistant is to guide the user into carrying out a recipe and
validate if each step of the recipe was executed correctly. Each recipe is modeled as
intermediate steps, much like a cookbook that contains textual visualization for how to cook
a recipe. The intermediate steps or cooking configurations as referred to the configuration
file, is nothing more than lists with ingredients and utensils that comprise the scene at a
certain point. Given the specification about the recipe, the cooking assistance process for a
specific recipe step will be broken down into three parts.

The first part is about the correctness of the ingredients, meaning that all the ingredi-
ents that are related to the current step are present in the scene. This will be deduced by
detecting the ingredients in the scene and comparing them with the ingredients that should
exist for the execution of the specific recipe. The second part is about motion consideration
of the individual detected objects. The information about the motion of an object functions
as a safeguard for the substantiation of the sequence of steps. By obtaining definitive
information on the ingredient that was meant to be added at a certain step of the recipe has
indeed moved, the system reduces some uncertainty about the existing and future states.
The third part is about the spatial configuration that the recipe ingredients or utensils
should respect. If all of the above circumstances are fulfilled, the recipe step is considered
as complete and the user is instructed to advance to the next recipe step. Otherwise, the
user is informed with appropriate messages. The recipe is considered accomplished if all
individual steps have been finished properly.

4. Experiments

The present section shows experimentation that was conducted in this research, and
the corresponding results, both quantitative and qualitative. The qualitative results include
demonstration of individual parts of our pipeline, e.g., object detection, spatial arrangement,
etc., in the form of sequences of images originally extracted from videos that were recorded
during execution. More specifically, Secions 4.1–4.2 present the behavior of the system while
executing each of the two recipes. Preliminary experimentation and metrics corresponding
to the individual components of the system are included in Secions 4.3–4.4.

4.1. Checking for Correct Ingredients

Each recipe requires a list of utensils and ingredients, such that the user of the sys-
tem/cook can carry out the recipe successfully. The system provides a preliminary utility,
which informs the user whether or not all utensils/ingredients are present in the cooking
scene. If something is missing, the system can understand and inform the user with an
appropriate message.

The process is completed when:
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1. Everything found in the scene matches the list of ingredients and utensils explained
in Secion 3.4.1;

2. The first step of the recipe, as explained in Secion 4.2, is finished successfully.

An example of the above process is presented in Figure 11. Even if all the ingre-
dients/utensils are contextually appropriate, the system will carry on with examining
the aforementioned correctness until the first step of the recipe is validated. There is a
two-fold explanation for this kind of behavior. First and foremost, the human error is taken
into account: for example, if the user/cook mistakenly adds a different ingredient in the
first step, the state (panel messages, etc.) will return to a state where the ingredients are
incorrect once again, indicating that something went wrong. Furthermore, it takes into
consideration a possible compromise or change of state of the food ingredients. This feature
adds resilience and adaptability to the system, since every state is reversible, depending
solely on the condition of the food ingredients and utensils.

(a) (b)

(c) (d)

(e)

Figure 11. The process of checking for the correct ingredients: (a) tomatoes missing, (b)
plate and tomatoes missing, (c) ntakos missing, (d) ntakos and oil missing, (e) all the
ingredients are present.

4.2. Recipes

By acquiring the correct ingredients/utensils (see Figure 11), the user can proceed
in the realization of the recipe. The ingredients are added one at a time, more or less like
in real life. The first message that pops up on the screen is to add ntakos to the plate
(see Figure 12a). The user moves the ntakos to the plate (see Figure 12b) and the cooking
assistant calculates if the procedure is done accordingly to the plan. The message that
pops up on the screen is “Ntakos added in plate” as well as the next message, which is
to add the next ingredient. In this case, it is “Add diced tomatoes on top of plate” (see
Figure 12c). After adding tomatoes on top of ntakos successfully, the messages inform the
user about the outcome and instructs them to add the next ingredient, which is Feta (see
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Figure 12e). In the same manner, Feta is added on top (see Figure 12g) and lastly oil on top
of everything (see Figure 12i). Due to the fact that adding oil was the final step, a message
pops up, informing the user that the recipe was executed successfully.

Similarly, the execution of Fava is shown in Figure 13.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 12. Cooking procedure of Greek Ntakos: (a) first step: add ntakos, (b) moving
ntakos; (c) second step: add diced tomatoes, (d) moving tomatoes; (e) third step: add feta,
(f) moving feta; (g) fourth step: add oil, (h) moving oil; (i) successful execution of the recipe.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 13. Cooking procedure of fava: (a) first step: add onion, (b) moving onion; (c)
second step: add oil, (d) moving oil; (e) third step: add salt, (f) moving salt; (g) fourth step:
add lemon, (h) moving lemon; (i) successful execution of the recipe.

4.3. Spatial Arrangement of the Objects

Figure 14 depicts the relative position of each object to each other. The system generates
each position accordingly in real time (see Secion 3.4.2). For example, in Figure 14a the plate
with fava is right from the oil and left from the spoon. Similarly, the spoon is right from
the oil and the plate with fava. The cup with the oil is left from spoon and left from fava.
In addition to this, the configuration file, explained in Secion 3.4.1, contains the required
positions of the ingredients/utensils used in the specific cooking procedure. By comparing
the calculated relative position to that of the configuration file, the system determines if
these match each other. The results are shown in Figure 15.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 14. The spatial arrangement of objects at successive frames: (a) initial state, (b)
spoon has been moved but is still in the right of the plate, (c) both oil and spoon have
moved downwards, (d) plate has been removed from the scene and the labels have adapted,
(e) only the spoon appears in the scene so no information is shown, (f) plate has reappeared,
(g) all three objects are in the scene and appropriate relative positions are shown.
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(a) (b)

(c)

Figure 15. Assessment of the spatial configuration for “fava” recipe according to specifica-
tion 2: (a) correct arrangement of objects, (b) some or all objects are not placed correctly, (c)
objects are not placed correctly.

4.4. Metrics

In information retrieval, the instances are documents and the task is to return a set of
relevant documents given a search term. Precision is the number of relevant documents
retrieved by a search divided by the total number of documents retrieved by that search.
In a classification task, the precision for a class is the number of true positives, otherwise
the number of items correctly labeled as belonging to the positive class, divided by the
total number of elements labeled as belonging to the positive class, i.e., the sum of true
positives and false positives, which are items incorrectly labeled as belonging to the class
(see Equation (1)).

Precision =
True Positive

True Positive + False Positive
(1)

4.4.1. Optical Flow Metrics

To assess the performance of the algorithms mentioned in Secion 3.3, an experiment
was designed. The experiment included three objects, namely a plate, a glass bowl and a
small plastic cup. Each object was resettled through eight various positions with a steady
force and within an equal distance (see Figure 6).

Ground truth was established in order to cross-validate the true and false positives
of each method. Precision was then calculated via the scikit-learn, an open-source Python
ML tool for predictive data analysis [38]. The purpose of measuring the precision of each
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optical flow method was double-edged; on the one hand, it measured the performance of
each method, establishing which is the best of these methods. On the other hand, it also
serves as a conclusive way of establishing the best threshold for each method and later uses
this threshold in the program that quantifies motion.

The thresholds tested were devised in a heuristic way by applying a 10x, where x
equals 0.5. Table 5 shows the results. As shown, Farneback Dense Optical Flow achieved
perfect precision for medium to larger thresholds and, therefore, we utilized this method in
the software.

Table 5. Precision of each method grouped by threshold.

Methods Thresholds

3.16 10 31.6 100 316.22

Lucas–Kanade Sparse
Optical Flow 0.72 0.67 0.77 0.75 0.83

Lucas–Kanade Dense
Optical Flow 0.0 0.72 0.8 0.81 0.82

Farneback Dense
Optical Flow 0.8 0.86 1 1 0.0

4.4.2. Object Detection Metrics

For the purpose of evaluation of the object detection module we conducted a short
experiment using (a) a pre-trained detector and (b) our detector built on the “Greek ntakos”
objects dataset. The motivation for this experiment was to evaluate what someone can
expect from an off-the-shelf detector in a relatively easy task and a comparison against the
detector, which we trained on the custom objects. The pre-trained model was trained on
the LVIS [30] dataset; therefore, we chose only three objects, which appear in this dataset
and our dataset. These objects were the glass bowl, the plastic cup and the plate. Each
object was imaged at nine different positions on a table.

As shown in Figure 16, two of the objects were transparent, which added extra
complexity but at the same time manifested the necessity of training a custom object
detector. Figure 16 cements some of the notions discussed here. Overall, the precision of
the pre-trained model was very poor. The average precision was 5.7% for the cup, and
0.0 % for the glass bowl and the plate. On the other hand, the performance of the custom
object detector was outstanding in all three of the objects and in most of the cases. Even
though detecting a transparent object or even a white plate on a white table remains an
intractable task, the custom detector achieved high scores. The detector achieved 98.812%
true positives for the plate, 95.198% for glass bowl and 83.647% for plastic cup, succeeding
in all three of the criteria, which fulfills the “true positive” classification: confidence score >
threshold. The predicted class matches the class of a ground truth; the predicted bounding
box had an IoU greater than the threshold (e.g., 0.5) with the ground-truth. Figure 17
shows some of the successfully annotated instances of the custom detector. Although
it is understandable that training a detector on these custom objects is beneficial over
the off-the-shelf detector, at the same time, it is also experimentally confirmed that such
detector performed poorly in a real-world situation. Therefore, we conclude that even if a
detector was trained on a very large and diverse dataset, possibly including all categories
of interest, there is not prospect for direct application and we suggest training a detector on
a custom dataset.
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The same custom detector and another one trained on the “Fava”’ dataset were utilized
in individual experiments including unseen images during a real recipe preparation. For
these experiments, we did not conduct a formal evaluation, however we realized that the
algorithm was able to detect almost all of the objects and at all video frames correctly. The
few exceptions were when the algorithm was presented with transparent objects (class
missmatch) and objects that appeared inside other objects (false positives).

(a) (b)

(c) (d)

(e) (f)

Figure 16. Performance of the off-the-self detector in three classes: (a,d,e) show that detector
mismatched the classes, (b,f) show that the detector did not achieve any detection of object
for the plate and the plastic cup. In (c) the detector misrecognized the object as a computer
mouse rather than as a plate.
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Figure 17. Performance of the custom detector in the same three classes: successfully
annotated instances of the custom detector.

5. Conclusions

The current work introduces a cooking assistance system that provides the user with
guidance in the accomplishment of a cooking activity in terms of a recipe and its correct
execution. The potential of this work lies in the fact that each recipe is imported in the
system in the form of a single configuration file. The system, by construing the configuration
file, can provide the user with guidance for carrying out a recipe through appropriate
messages that appear in a panel specifically designed for the user. The system can validate
the correctness of each step by detecting used ingredients and the corresponding utensils
and calculating each respective motion in each step.

The system also supports the spatial arrangement of objects such as utensils and food
ingredients in terms of where each one is located to another. The configuration file contains,
in the same fashion as the recipe, the correct position of an object relative to another
object. The system can validate if the real position of an object is correct by calculating the
respective geometric proportions.

The goal of this work is the integration in ICS-FORTH’s Intelligent Home and aspires
to be used in the ambient facilities of the Intelligent Kitchen. Alongside other pre-existing
systems, it focuses on supporting and guiding the cooking process, decreasing the perceived
complexity of unfamiliar recipes, increasing the user’s confidence about the success of
intermediate steps and finally reducing the user’s inhibitions of using technology in a
kitchen.

Based on the quantitative and qualitative evaluation of the methods used, this work
seems to be a very promising cooking assistant. The results show that the system behaves
robustly in low-confidence scenarios and that, in most of the cases, it succeeds both in
identifying the correctness of a recipe but also establishing a satisfactory way of providing
the necessary advice to the user. In contrast to other systems, we lay on the side of real-time
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feedback, which is missing [13] or partially missing [14] from recent approaches, but also on
the side of easier deployment, since our approach does not depend on specialized hardware
[11,14]. However, since all of these approaches concentrate on different aspects of recipe
preparation, we conclude that future efforts should consider the outcomes from all of them.

It should be conclusive for the reader that, when it comes to the discussion of the future
work, there is a vast amount of things that could have been done differently or different
methods that could have been used in the given scenarios. Nonetheless, at this point, it
should be obvious that none of these methods could guarantee a better result, due to the
inherent difficulties of computer vision as a field and the uncertainty it entails. Despite
the fact that some of the challenges faced still remain intractable till now, there are some
improvements and additions that the system could benefit from. Specifically, handling
occlusion, illumination variations, transparent ingredients such as water, corrupted pixels
and complex background are important for better results, especially since this work was
performed in a natural human setup. Extra sensors such as accelerometers, weight sensors
or wearable cameras could be deployed to enhance the hypothesis that an object moves or
that an ingredient empties. Activity recognition is a task that could further advance this
work by recognizing specific cooking activities, such as cutting or peeling, or to interpret
human gestures. The acceleration of some of the methods used could also signify better
processing and better results. Specifically, deploying processing in CUDA or applying
multi-threading could lead to better results in Optical Flow. Last but not least, it goes
without saying that there is a necessity of a UI that engulfs the current work and provides
the user with an interactive, context-aware, multi-modal, multi-sensory, user-adaptive and
intuitive way of preparing their meals.
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